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Abstract. A k-ribbon tiling is a decomposition of a connected skew diagram into disjoint
ribbons of size k. In this paper, we establish a connection between a subset of k-ribbon
tilings and Petrie symmetric functions, thus providing a combinatorial interpretation for the
coefficients in a Pieri-like rule for the Petrie symmetric functions due to Grinberg (Algebr.
Comb. 5 (2022), no. 5, 947-1013). This also extends a result by Cheng et al. (Proc. Amer.
Math. Soc. 151 (2023), no. 5, 1839-1854). As a bonus, our findings can be effectively utilized
to derive certain specializations.

1. Introduction and background

Petrie symmetric functions were introduced by Doty–Walker [6] and Bazeniar–Ahmia–
Belbachir [2] when they studied a class of truncated tensor products of representations of the
general linear group, and an extension of Pascal triangles, respectively. Very recently, Fu–Mei
[8] and Grinberg [9] independently investigated a series of nice properties of Petrie symmet-
ric functions. The former was motivated by its natural unification of elementary symmetric
functions and complete homogeneous symmetric functions. The latter was inspired by Liu
and Polo’s work on the cohomology of line bundles over a flag scheme [13, 14].

The Petrie symmetric functions G(k,m) of degree m are defined by

∞∑
m=0

G(k,m)(x)zm =
∞∏
i=1

k−1∑
j=0

(xiz)
j

 =
∞∏
i=1

1− (xiz)
k

1− xiz
=
∞∏
i=1

k−1∏
j=1

(
1− ωjxiz

)
, (1.1)

where ω = e
2πi
k is the primitive k-th root of unity.

By the first equality of (1.1) and the generating function of partitions, one gets an equivalent
definition of G(k,m)(x) in terms of monomial symmetric functions.

G(k,m)(x) =
∑
λ`m
λ1<k

mλ(x). (1.2)

In particular, G(2,m)(x) = em(x), G(k,m)(x) = hm(x) if k > m and G(k,m)(x) = hm(x)−
pm(x) if k = m. A Pieri-like rule for the Petrie symmetric functions was proved by Grinberg
[9]. Throughout the paper, we define χ(A) = 1 if the statement A is true; otherwise χ(A) = 0.

Theorem 1.1. [9] For k ∈ N+, m ∈ N and any partition µ,

G(k,m)(x)sµ(x) =
∑

λ`m+|µ|

Petk(λ, µ)sλ(x), (1.3)

where µ ⊆ λ and Petk(λ, µ) = det
1≤i,j≤`(λ)

(χ(0 ≤ λi − µj − i+ j < k)).
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The integers Petk(λ, µ) are called k-Petrie numbers. Grinberg further showed that Petk(λ, µ)
have three possible values 0,−1, 1. Our main result interprets the k-Petrie number as a finite
product associated to a proper k-ribbon tiling (see Theorem 1.4).

Before stating the main result, we first introduce some necessary definitions and notations.
For any skew diagram K, the size of K, denoted by |K|, is the number of boxes of K.

Definition 1.2 (proper k-ribbon tiling). A k-ribbon tiling Θ = (Θ1, . . . ,Θm) of a skew
diagram K is a sequence of ribbons Θi of size k whose disjoint union is exactly K, denoted by
∪̇mi=1Θi = K. Let K = λ/µ and ν be any partition such that µ ⊆ ν ⊆ λ, we call a tiling (Θ, ν)
of λ/µ proper if Θ is a k-ribbon tiling of λ/ν satisfying the following two conditions:

(i) ν/µ is a horizontal strip, that is, no two boxes are in the same column;
(ii) the starting box of each k-ribbon in Θ is the leftmost box of a row of λ/ν.

µ

λ

ν/µ

Θ1

Θ2

Θ3

Figure 1. Let λ = (13, 12, 7, 6, 6), µ = (9, 5, 2, 1, 1) and ν = (11, 8, 4, 2, 1),
an even proper 6-ribbon tiling (Θ, ν) ∈ E6

8 (λ, µ) is displayed where every box
of ν/µ and of λ/ν is marked by a cross × and a black dot • in the center
respectively.

Remark 1.3. The k-ribbon tilings are used to describe the plethystic Murnaghan-Nakayama
rule (see for instance [3, 5, 7, 17]) and related to specializations of Schur functions at primitive
roots of unity (see for instance [15, p. 91]).

Let r(K) be the number of rows of K, we say that a proper tiling (Θ, ν) is odd if r(Θ) :=
r(Θ1) + · · ·+ r(Θm) is odd; and even otherwise.

Let Okn(λ, µ) (resp. Ekn(λ, µ)) be the set of odd (resp. even) proper k-ribbon tilings of λ/µ
with |ν/µ| = n. Set Dkn(λ, µ) = Okn(λ, µ) ∪̇ Ekn(λ, µ). Then |λ| − |µ| − n must be a multiplier
of k unless Dkn(λ, µ) = ∅. See Figure 1 for an example.

We are now ready to state our main result:

Theorem 1.4. Let µ, λ be two partitions such that µ ⊆ λ.

(1) If λ/µ is connected, then either |Dkn(λ, µ)| ∈ {0, 1} or |Dkn(λ, µ)| is even and |Okn(λ, µ)| =
|Ekn(λ, µ)|.

(2) Petk(λ, µ) = 0 unless λ/µ has exactly one unique proper k-ribbon tiling and every row
of λ/µ has size less than k. In this case, let (Θ, ν) with Θ = (Θ1, · · · ,Θm) be the
unique k-ribbon tiling of λ/µ, then

Petk(λ, µ) =

m∏
i=1

(−1)r(Θi). (1.4)
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Equation (1.4) recovers and extends the combinatorial description of Petk(λ,∅) by Cheng
et al. [4]. Their proof employs Grinberg’s combinatorial formula of Petk(λ,∅) and a coding
from bounded partitions to abacuses with bounded vertical runners. Our proof consists of
an equality for the number of proper tilings, the plethystic Murnaghan-Nakayama rule and
applications of the λ-ring theory. Our method provides a different and alternative approach
to study Petrie symmetric functions, and is also feasible for modular Schur functions [6].
Especially we would like to draw attention to the λ-ring or vertex algebraic approach which
helps unveiling intrinsic relations between Petrie symmetric functions and Schur symmetric
functions.

The rest of the paper is organized as follows. In Section 2, we review some terminologies
regarding tilings, symmetric functions and the λ-ring theory. In Section 3, we discuss the num-
ber of proper tilings of a connected skew diagram, which establishes the first part of Theorem
1.4. Section 4 is devoted to proving the second part of Theorem 1.4 and two specializations
that are consequences of Theorem 1.4 (see Corollary 4.5 and Corollary 4.7).

2. Preliminaries

This section presents some terminologies on skew partitions, symmetric functions and λ-
rings. For a complete description, we refer to the books [11] and [15, Section 1].

2.1. Skew diagrams, ribbons and proper tilings. A partition λ = (λ1, λ2, · · · , λk) of n,
denoted by λ ` n, is a sequence of positive integers such that λi ≥ λi+1 for 1 ≤ i < k. Each
λi is called a part of λ. We use `(λ) and |λ| to denote the length and the size of λ, that is,
`(λ) = k and |λ| = n.

A partition is identified with its Young diagram, which is the left-justified array of squares
consisting of λi squares in the i-th row from top to bottom for 1 ≤ i ≤ `(λ). Here all rows
(resp. columns) of a skew diagram are numbered from top to bottom (resp. from left to right).
A box z has coordinate (i, j) if it is located on the i-th row and the j-th column and we say
that the box z = (i, j) has content c(z) = j − i. Two boxes are said to be on the same
diagonal if they have the same content. The conjugate of λ, denoted by λ′, is obtained from
λ by transposing the diagram λ along the diagonal of content zero.

For two partitions λ and µ, we write µ ⊆ λ if the Young diagram of µ can be drawn inside
that of λ, i.e., µi ≤ λi for all i ≥ 1. In this case the set-theoretic difference θ = λ−µ is called
a skew diagram, denoted by θ = λ/µ and |θ| = |λ| − |µ| is the size of λ/µ. The height ht(λ/µ)
of a connected skew diagram λ/µ is defined to be one less than the number of rows of λ/µ,
that is, ht(λ/µ) = r(λ/µ)− 1.

A path in a skew diagram θ is a sequence x0, x1, · · · , xn of squares in θ from bottom-left
to top-right such that xi−1 and xi have a common edge, for 1 ≤ i ≤ n. A subset ξ of θ is
(edgewise) connected if any two squares in ξ are connected by a path in ξ. The connected
components are the maximal connected subdiagrams of θ.

A skew diagram λ/µ is a vertical (resp. horizontal) strip if each row (resp. column) contains
at most one cell. Note that a vertical or horizontal strip is connected only if it is a column
or a row. A ribbon is a connected skew diagram without 2× 2 block of boxes. A k-ribbon is a
ribbon of size k. Geometrically a k-ribbon is a string of k cells; see for instance Figure 1. Given
a ribbon, the leftmost box of the bottom row (also the southwesternmost box) is called the
starting box, denoted by s; and the rightmost box of the top row (also the northeasternmost
box) is called the ending box, denoted by t.

We introduce dual proper tilings by their conjugacy.
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Definition 2.1 (dual proper tiling). For a skew diagram λ/µ, let ν be any partition such
that µ ⊆ ν ⊆ λ. A dual proper tiling (Θ, ν) of λ/µ is a k-ribbon tiling with Θ = (Θ1, . . . ,Θm)
satisfying

(i
′
) ν/µ is a vertical strip;

(ii
′
) the ending box of each Θi is the topmost box of a column of λ/ν.

Equivalently, the pair (Θ, ν) is a dual proper tiling of λ/µ if and only if (Θ′, ν ′) is a proper
tiling of λ′/µ′, where Θ′ = (Θ′1, . . . ,Θ

′
m).

2.2. Symmetric functions and λ-rings. Let Λ be the ring of symmetric functions in
infinite variables x = (x1, x2, . . .) over the rational field Q. The linear bases of Λ are in-
dexed by partitions. Let P denote the set of all partitions. For every λ ∈ P, let pλ(x) =
pλ1(x)pλ2(x) · · · pλ`(λ)(x) with

pr(x) =
∞∑
i=1

xri

being the power-sum symmetric functions. The set of pλ(x) for all λ ∈ P forms a Q-basis of
Λ. If we consider the space Λ over the integer ring Z, then Λ has the following bases indexed
by partitions. A weak composition α = (α1, . . . , αk) of n is a sequence of nonnegative integers
whose sum equals n. The monomial symmetric function

mλ(x) =
∑
α

xα =
∑
α

xα1
1 xα2

2 · · ·

which is summed over all weak compositions α that are permutations of parts of λ and infin-
itely many zeros. The elementary symmetric function is defined by eλ(x) = eλ1(x) · · · eλ`(λ)(x)
where

er(x) = m(1r)(x) =
∑

i1<···<ir

xi1 · · ·xir .

The complete symmetric function is hλ(x) = hλ1(x) · · ·hλ`(λ)(x) with

hr(x) =
∑
λ`r

mλ(x) =
∑

i1≤···≤ir

xi1 · · ·xir .

A semi-standard Young tableau of a skew shape is a filling of positive integers to the Young
diagram of λ such that each cell is filled with exactly one integer, entries along each row are
weakly increasing from left to right, and entries along each column are strictly increasing from
top to bottom. The Schur function is given by

sλ(x) =
∑
T

xT =
∑
T

xT11 xT22 · · ·

where the sum is ranged over all semi-standard Young tableaux T of shape λ and Ti counts
the occurrences of entry i in T . In addition, the elementary symmetric functions and the
complete homogeneous symmetric functions are characterized by their generating function
formulas:

E(z) :=
∑
n≥0

en(x)zn =
∏
i≥1

 ∑
0≤j≤1

(xiz)
j

 =
∏
i≥1

(1 + xiz), (2.1)
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H(z) :=
∑
n≥0

hn(x)zn =
∏
i≥1

∑
j≥0

(xiz)
j

 =
∏
i≥1

1

1− xiz
. (2.2)

The theory of λ-rings is mainly built upon one of the symmetric functions [11]. A λ-ring is
a commutative ring R with identity 1 and with operations λi : R → R for i ∈ N, such that
for all x ∈ R, the formal power series

λz(x) =
∞∑
i=0

λi(x)zi = λ0(x) + λ1(x)z + λ2(x)z2 + · · · (2.3)

satisfies λ0(x) = 1, λ1(x) = x,

λz(x+ y) = λz(x)λz(y) and λz(xy) =

∞∑
i=0

λi(x)λi(y)zi. (2.4)

The first equality of (2.4) gives λz(0) = 1 and λz(x) = λz(−x)−1 by taking y = 0 and y = −x,
respectively. In fact, (2.4) guarantees that λz is a homomorphism from R to the ring R[[z]]
of formal power series with constant term 1. Given two λ-rings R1,R2, a λ-homomorphism
ψ : R1 → R2 is a homomorphism of rings such that

ψ(λr(x)) = λr(ψ(x)) (2.5)

for all x ∈ R1 and r ∈ N.
Consider the ring Λ of symmetric functions over Q, which is a free λ-ring on one generator,

i.e., Λ = Q[e1, e2, · · · ] with λr(e1) = er. We define σr(x) := (−1)rλr(−x) and

σz(x) :=
∞∑
i=0

σi(x)zi =
∞∑
i=0

λi(−x)(−z)i = λ−z(−x).

For any λ-ring R, there is a unique λ-homomorphism ψ : Λ → R, by which e1 is mapped
to x and furthermore

er 7→ λr(x); (2.6)

hr 7→ σr(x); (2.7)

E(z) 7→ λz(x); (2.8)

H(z) 7→ σz(x). (2.9)

These relations are essentially consequences of (2.1), (2.2) and (2.5). Let sλ/µ(x) be the image

of sλ/µ under ψ, i.e., sλ/µ(x) := ψ(sλ/µ), we have

sλ/µ(−x) = (−1)|λ/µ|sλ
′/µ′(x). (2.10)

This is the duality rule for skew Schur functions in the λ-ring notations, which follows from
(2.6), (2.7), the relation σr(x) = (−1)rλr(−x) and the Jacobi-Trudi identity; see also [15,
p. 43]. Let us recall the Jacobi-Trudi identity: For any partitions µ, λ such that µ ⊆ λ and
`(λ) = n, we have

sλ/µ = det(hλi−µj−i+j)
n
i,j=1 (2.11)
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where h0 = 1 and hk = 0 for k < 0. Let y = (y1, y2, . . .), define xy = (xiyj)i,j≥1 and
x+ y = (xi, yj)i≥1,j≥1, then the sum rule is given by

sλ/µ(x+ y) =
∑

µ⊆ν⊆λ
sλ/ν(x)sν/µ(y), (2.12)

as a result of the Littlewood-Richardson rule (see [15, (5.10)]).

3. On the number of proper tilings

This section is devoted to proving the first part of Theorem 1.4, that is (1), an equality for
the number of proper tilings of a connected skew diagram λ/µ. In what follows, we always
assume that λ/µ is connected unless otherwise stated.

For each Dkn(λ, µ), let

m :=
|λ| − |µ| − n

k
,

then Dkn(λ, µ) = ∅ if m 6∈ N+. Therefore, we only consider the case that m ∈ N+ and will
establish (1) of Theorem 1.4 by an inductive argument. For this purpose, we need to introduce
an involution ω, which is essentially a swap of certain boxes from λ/ν and ν/µ. This is to be
proved in Lemma 3.3.

There are two steps to achieve Lemma 3.3. In the first step, we mark the center of each
box of a skew diagram by a cross or a dot. In the second step, we introduce a set R of skew
diagrams, consisting of these two kinds of boxes, and define the map ω : R → R. Finally, a
close inspection of the construction of ω gives that ω−1 = ω, namely, ω is an involution.

Given a ribbon α of •–boxes and a set s of ribbons consisting of ×–boxes, we say that s
appears to the front (resp. end) of α if one ×–box of s is to the bottom left (resp. top right)
of α. Otherwise, s is below (resp. above) α if one ×–box of s is to the south (resp. north) of
α. A schematic diagram for the locations of ×–boxes is shown in Figure 2.

end

front

above

below

NW(K) SE(K)

Figure 2. Different positions for ×–boxes (left), the northwest ribbon NW(K) (mid-
dle) and the southeast ribbon SE(K) (right) of a skew diagram K.

For a skew diagram K, let SE(K) (resp. NW(K)) be the southeast (resp. northwest) rib-
bon of K, which starts from the southwesternmost box of K, traverses the southeast (resp.
northwest) border of K, and ends at the the northeasternmost box of K (see Figure 2).
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Definition 3.1. Let R be the set of pairs (α, s) where α is a ribbon of •–boxes and s is a set
of ribbons (not necessarily connected) consisting of ×–boxes such that

(1) its disjoint union α ∪̇ s is a connected skew diagram.
(2) s may appear to the front or the end of α, but not both.
(3) s may appear below or above α, but not both.
(4) Let γ1 (resp. γ2) be the ribbon that starts from the southwesternmost box (resp. ends

at the northeasternmost box) of α ∪̇ s such that each box is the only box of its diagonal
and all boxes are uniformly • or ×. Then |γ1| ≤ |γ2| if γ1 is a non-empty ribbon of
×–boxes, and |γ2| ≤ |γ1| if γ2 is a non-empty ribbon of ×–boxes.

See the first two skew diagrams of Figure 3 as examples from R. We are now in a position
to define the map ω : R → R.

Definition 3.2 (The map ω). For a given pair (α, s) ∈ R and every ×-box of s,

(I) if it is not the only box of its diagonal of α ∪̇ s, then swap it with the unique •–box
of the same diagonal;

(II) otherwise it is the only box of its diagonal,
• if it appears to the front of α, that is, γ1 is a ribbon of ×–boxes, then |γ1| ≤ |γ2|.

Let γ ⊆ γ2 be the ribbon of size |γ1| that has the same ending box of γ2. Replace
each ×–box of γ1 by a •–box, and replace each •–box of γ by a ×–box;
• otherwise it appears to the end of α, that is, γ2 is a ribbon of ×–boxes, then
|γ2| ≤ |γ1|. Let γ ⊆ γ1 be the ribbon of size |γ2| that has the same starting box
of γ1. Replace each ×–box of γ2 by a •–box, and replace each •–box of γ by a
×–box.

Define ω(α, s) = (β, s′) where s′ is the set of ×–boxes and β is the set of •–boxes after
implementing (I) and (II).

We give an example of ω in Figure 3. In the next step, we examine that ω is a well-defined
involution on R.

Lemma 3.3. The map ω : R → R is an involution by which the number of ×–boxes is
preserved.

Proof. We will verify that (β, s′) ∈ R by conditions (1)–(4) of Definition 3.1. Since α ∪̇ s =
β ∪̇ s′, condition (1) is clearly satisfied.

The step (I) implies that a ×–box of s appears below (or above) α if and only if a ×–box
of s′ appears above (or below) β. Therefore, condition (3) is satisfied by s′.

For the step (II), without loss of generality, suppose that γ1 is a ribbon of ×–boxes from s,
then γ2 must be a ribbon of •–boxes as s can not appear both to the front and the end of α
by (2). Further, |γ1| ≤ |γ2| by condition (4), which means, after applying ω, that the ribbon
γ of ×–boxes appears to the end of β and no ×–box is located to the front of β. This verifies
condition (2) for s′.

We next check condition (4) for the pair (β, s′). Let ρ be the ribbon starting from the
southwesternmost box of α ∪̇ s such that every box is the only box of its diagonal. Since γ1

as a ribbon of ×–boxes appears to the front of α, we have γ1 ⊆ ρ, thus |γ1| ≤ |ρ|. It follows
that (β, s′) has property (4) by noting that the ribbon γ of size |γ1| with ×–boxes appears to
the end of β. This completes the proof that (β, s′) ∈ R.

It is not hard to see that ω is an involution as the construction for each of (I) and (II) is
an involution. In addition |s| = |s′|, meaning that the number of ×–boxes is preserved by ω.
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�

ω

Θ1

Θ2

Θ3

Figure 3. An example of the involution ω (left) and a proper tiling (right).

Before we proceed with proving Theorem 1.4, we make an important observation, introduce
the concept of undetermined ×-boxes and some auxiliary lemmas.

Observation 3.4. Suppose that Θ = (Θ1,Θ2, . . . ,Θm) is a k-ribbon tiling of λ/ν satisfying
condition (ii). Then we can number these m ribbons according to the relation

ν ⊆ ν ∪̇Θ1 ⊆ · · · ⊆ ν ∪̇Θ1 ∪̇ · · · ∪̇Θm = λ,

where Θi is to the northeast of Θj for any i < j, that is, the starting box (resp. the ending
box) of Θi is to the northeast of that of Θj . In terms of contents, it is equivalent to say that
the content of the starting box (or the ending box) of Θi is strictly greater than that of Θj .
Figure 3 (right) presents an example for m = 3 and k = 5.

Note that Θ is uniquely determined by (ii) if each ×–box of ν/µ is fixed. Thus there must
exist a ×–box whose coordinate is not agreed among all proper k-ribbon tilings of Dkn(λ, µ)
provided that |Dkn(λ, µ)| ≥ 2. We call such ×–box undetermined; otherwise determined. Let ξ
be the set of determined ×–boxes of λ/µ, then |Dkn(λ, µ)| = |Dkn−|ξ|(λ, µ ∪̇ ξ)|, and it suffices

to assume that all ×–boxes are undermined.

Lemma 3.5. If m = 1, then |Dkn(λ, µ)| ∈ {0, 1, 2}. In particular if |Dkn(λ, µ)| = 2, then
|Ekn(λ, µ)| = |Okn(λ, µ)| = 1.

Proof. We only need to prove the statement for m = 1 and |Dkn(λ, µ)| > 1. In this case, any
proper k-ribbon tiling (Θ1, ν) contains only one k-ribbon Θ1 = λ/ν. By Definition 1.2, all
undetermined ×–boxes are located along the NW(λ/µ). Furthermore, any ×–box from ν/µ
can not stay above Θ1 because otherwise it would be determined, a contradiction. It follows
that ×–boxes appear either to the front or at the end of Θ1 such that Θ1∪̇(ν/µ) = λ/µ
is a ribbon. This further implies that the top row of λ/µ is either occupied by ×–boxes or
by •–boxes. Therefore, there are at most two possible proper tilings, respectively formed by
(Θ1, ν) and ω(Θ1, ν). On the other hand, we assume |Dkn,1(λ, µ)| ≥ 2, so |Dkn,1(λ, µ)| = 2. Let

ω(Θ1, ν) = (Θ′1, ν
′). In particular, r(Θ1) and r(Θ′1) differ by one because exactly one of ν, ν ′

contains the top row of λ/µ, that is, exactly one of the two proper tilings is odd (or even).
This finishes the proof and we refer to Figure 4 for an example. �

For every (Θ, ν) ∈ Dkn(λ, µ), let Θ1 be the k-ribbon from Θ whose ending box is the
northeasternmost box of λ/ν as in Observation 3.4. Let α be the k-ribbon along NW(λ/µ)
whose ending box is the northeasternmost box of λ/µ. Let u denote the row of boxes appearing
to the west of α (u can be empty). We label α and u on the left of Figure 4.
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α

u

Figure 4. Two proper 9-ribbon tilings where α is marked on the left and u = ××××.

Lemma 3.6. If u 6= ∅ and m ≥ 2, then

(1) For every (Θ, ν) ∈ Dkn(λ, µ), either u is a row of ×–boxes and Θ1 has the same starting
and ending points as α, or u is part of Θ1.

(2) Let p be the content difference of the rightmost boxes in the first two rows, then |u| ≤ p.

Proof. Let z be the rightmost box of the top row of λ/µ, then there must exist a proper tiling
(Θ, ν) such that Θ1 terminates at z because otherwise z would be a determined ×-box, which
is against the assumption. Let c(z) = c and y be the starting box of α, then c(y) = c−k+1. We
claim that Θ1 also starts at y. Suppose otherwise, the starting box of Θ1 is to the southeast
of y (along the same diagonal) because they have the same content and consequently the box
right below y has to be × due to condition (ii). However, y is the topmost box of a column,
which excludes the possibility that the box right below y could be × because of condition (i).
As a result, Θ1 must start at y, that is, both Θ1 and α have the same starting and ending
points. It follows that u is a row of ×-boxes in Θ as all boxes standing before y of the same
row must be × by (ii).

Since all ×-boxes are undetermined, there exists a tiling Ω such that u as a sequence of
•-boxes is part of some Ωi. We assert that i = 1. Suppose otherwise, that is, a k-ribbon Ωj is
located to the northeast of Ωi and j < i. Therefore, the starting box of Ωj is to the northeast
of y, thus its content is strictly larger than c− k + 1, while the ending box of Ωj has content
at most c. This results in that |Ωj | < k, a contradiction. It follows that i = 1 and u is part of
Ω1. This completes the proof of (1).

We next show (2). Since all ×-boxes are undetermined and u 6= ∅, (1) guarantees the
existence of a proper tiling (Φ, ν) such that u is part of Φ1, and by Observation 3.4 Φ1 ends
at the rightmost box of the second row. Let z′ be the rightmost box of the second row of λ/µ,
then c(z′) = c(z)− p = c− p, thus the starting box of Φ1 has content c− p− k+ 1. Since the
leftmost box of u has content c− k + 1− |u| and it is to the northeast of the starting box of
Φ1, we must have c− k + 1− |u| ≥ c− p− k + 1, i.e., |u| ≤ p, as desired.

�

Proof of Theorem 1.4 (1). We argue it by induction on m. The base case m = 1 is resolved
by Lemma 3.5. For m ≥ 2, n ≥ 1 and any connected skew diagram θ/ρ, let r = (|θ|−|ρ|−n)/k.
Suppose that |Okn(θ, ρ)| = |Ekn(θ, ρ)| for any 1 ≤ r < m if |Dkn(θ, ρ)| ≥ 2. We will show that
it is also true for all skew diagrams θ/ρ and n ≥ 1 such that r equals m. We distinguish the
cases that u = ∅, 1 ≤ |u| < p or |u| = p where p is defined in (2) of Lemma 3.6.

Case (1): u = ∅ and we will present a bijection σ : Dkn(λ, µ)→ Dkn(λ, µ ∪̇α).
For any (Θ, ν) ∈ Dkn(λ, µ), let s be the union of ×–boxes right above Θ1, then ω(Θ1, s) =

(α, s′) where s′ is the set of ×–boxes right below α. Let Θ − Θ1 be obtained from Θ by
removing Θ1, then (Θ−Θ1, (ν/s) ∪̇ s′) ∈ Dkn(λ, µ ∪̇α) and define

σ(Θ, ν) = (Θ−Θ1, (ν/s) ∪̇ s′). (3.1)

Since ω is an involution, the map σ is also a bijection, thus obtaining |Dkn(λ, µ)| = |Dkn(λ, µ ∪̇α)|.
An important point to note here is that r(Θ1) = r(α). This is true because the top row of
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ω

Θ1

s

α

s
′

Θ2

Θ3

Θ2

Θ3

Figure 5. For the case u = ∅, a proper tiling (Θ, ν) and ω(Θ1, s) where σ(Θ, ν) is
obtained from the right by deleting α. The boxes of s and s′ are highlighted in green.

τ

Figure 6. For the case 1 ≤ |u| < p, an example of the bijection τ .

Θ1∪̇s is a row of ×-boxes if and only if the bottom row of α∪̇s′ is a row of ×-boxes. In con-
sequence, |Okn(λ, µ)| = |Ekn(λ, µ)| provided that |Okn(λ, µ ∪̇α)| = |Ekn(λ, µ ∪̇α)|, which is true
by induction hypothesis. See Figure 5 for an example of σ.

Case (2): 1 ≤ |u| < p, we will reduce it to case (1) by a bijection

τ : Dkn(λ, µ)→ Dkn−|u|(ρ, µ)

where ρ is obtained from λ by removing the rightmost |u| boxes of its top row.
For (Θ, ν) ∈ Dkn(λ, µ), if Θ1 ends at the rightmost box of the top row, then u must be a row

of ×–boxes by Lemma 3.6. Let ω(Θ1, u) = (β, u′), then β is the k-ribbon starting from the
leftmost box of u and u′ is the set of rightmost ×–boxes from the top row with |u′| = |u|. If
Θ1 terminates at the rightmost box of the second row, that is, the top row of λ/µ is occupied
by ×–boxes, then remove the rightmost |u| number of ×–boxes of the top row. Let β = Θ1.

Let η be the skew diagram such that η/µ is obtained from ν/µ by removing the rightmost
|u| boxes of the top row. Let Ω = Θ−Θ1 + β be obtained from Θ by replacing Θ1 by β, then
define τ(Θ, ν) = (Ω, η) and it is a bijection with the property r(Θ) = r(Ω), implying that
|Okn(λ, µ)| = |Okn−|u|(ρ, µ)| and |Ekn(λ, µ)| = |Ekn−|u|(ρ, µ)|. See Figure 6 for an example of τ .

Note that the proper tiling (Ω, η) of ρ/µ belongs to case (1), that is, the k-ribbon that ends
at the rightmost box of the top row starts from a leftmost box. It follows from the argument
of case (1) that |Okn−|u|(ρ, µ)| = |Ekn−|u|(ρ, µ)|, namely, |Okn(λ, µ)| = |Ekn(λ, µ)|.

Case (3): |u| = p and we shall prove that the first two rows overlap in exactly one column,
that is, p = λ1−µ1. Let c be the content of the rightmost box of the first row of λ/µ. Suppose
p < λ1 − µ1, then there exists a proper tiling (Θ, ν) for which Θ1 passes through all boxes of
the top row, u is a sequence of ×–boxes and Θ2 ends at the rightmost box of the second row,
that is a box with content c− p. Therefore, the starting box of Θ2 has content c− p− k + 1,
which is also the content of the leftmost box of u. In consequence, the box right below the
leftmost box of u must be × by (ii) as it stands before the starting box of Θ2. However it is
impossible due to (i). So we find that |u| = p = λ1 − µ1.
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Θ1

Θ2

Ω1

Ω2

Figure 7. For the case |u| = p, two proper fillings with Θ1 ending at the first row
and Ω1 terminating at the second row.

Figure 8. Three proper tilings of an edgewise disconnected skew diagram

This further leads to that the number of proper tilings of λ/µ with u as a row of ×–
boxes equals the one with u as a row of •–boxes and r(Θ1) is changed by one, giving that
|Okn(λ, µ)| = |Ekn(λ, µ)|. Indeed, for any proper tiling with u as a row of×-boxes, we interchange
the boxes between u and the top row of Θ1, obtaining a proper tiling with u as a row of •-
boxes. For example, see Figure 7. For all cases, we have shown that |Okn(λ, µ)| = |Ekn(λ, µ)| if
|Dkn(λ, µ)| ≥ 2 inductively, which finishes the proof. �

Remark 3.7. It should be emphasized that Theorem 1.4 is not true for disconnected λ/µ.
For instance, let λ = (9, 8, 6, 5, 3, 2) and µ = (7, 6, 4, 3, 1). Choose k = 2 and |ν/µ| = 2. There
are three proper tilings of λ/µ as shown in Figure 8.

3.1. Proper tilings of a Young diagram. We will turn to the special case µ = ∅ and
will build connections between Theorem 1.4 and the combinatorial meaning of Petk(λ,∅) by
Cheng et al. [4] in Section 4. For simplicity, set Dkn(λ) = Dkn(λ,∅). Let corek(λ) denote the
k-core obtained from λ by successively removing k-ribbons in a way that at each step what
remains is also a Young diagram. It is independent of the order in which ribbons removed (cf.
[15, p. 12, Ex. 8 (c)]). In this particular case, the cardinality of Dkn(λ) is limited to precisely
two alternatives 0 and 1.

Theorem 3.8. For a partition λ, we have |Dkn(λ)| ∈ {0, 1}. If λ1 < k, then |Dkn(λ)| = 1 if
and only if corek(λ) has at most one row.

Proof. First we show that if Dkn(λ) 6= ∅, then |Dkn(λ)| = 1 and corek(λ) has at most one row.
If Dkn(λ) 6= ∅, that is, a proper k-ribbon tiling (Θ, ν) with |ν| = n exists, then ν = corek(λ)

has to be a row (could be empty) by condition (i) and ν should start from the leftmost box
of the top row of λ. That is, there is only one choice for ν, thus a unique choice for Θ as Θ is
determined by ν, k and λ. As a result, |Dkn(λ)| = 1.

Second we establish that if λ1 < k and corek(λ) has at most one row, then |Dkn(λ)| = 1.
This is achieved by finding a proper k-ribbon tiling of λ. Choose Θ1 as the k-ribbon from
NW(λ/ corek(λ)) that ends at the northeasternmost box of λ/ corek(λ), then we assert that Θ1

starts from the first column. Let c be the content of the northeasternmost box of λ/ corek(λ),
then the starting box of Θ1 has content c − k + 1 = λ1 − k ≤ −1. Since the leftmost box of
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Figure 9. The existence of a unique proper tiling if 4 = λ1 < k = 5 and corek(λ) =
(2) is a row.

the second row has content −1 and Θ1 is part of NW(λ/ corek(λ)), we see that Θ1 must start
with the first column of λ.

Let d be the content of the northeasternmost box of λ/(corek(λ) ∪̇Θ1), then d < c because
if d = c, then a box of content c + 1 is contained in λ, contradicting that c is the largest
content. Define Θ2 to be the k-ribbon from NW(λ/(corek(λ) ∪̇Θ1)) that terminates at the
box of content d, that is also the northeasternmost box of λ/(corek(λ) ∪̇Θ1). Then Θ2 starts
from a box of content d−k+1 < c−k+1. Since the starting box of Θ1 has content c−k+1 and
Θ2 is part of NW(λ/(corek(λ) ∪̇Θ1)), the starting box of Θ2 also stands at the first column.

Continue this process until we obtain Θm for which (Θ, corek(λ)) with Θ = (Θ1, . . . ,Θm)
is a proper tiling of λ as all Θi’s start from the first column of λ. See Figure 9 for an example.
This finishes the proof. �

4. The proof of Theorem 1.4

The purpose of this section is to prove the second part of Theorem 1.4, that is (2), charac-
terizing k-Petrie numbers Petk(λ, µ) in terms of proper tilings.

First we write the k-Petrie numbers in terms of skew Schur functions via λ-ring notations
(see Lemma 4.1). Second we apply the plethystic Murnaghan-Nakayama rule to express the
k-Petrie numbers as a sum of signed proper tilings. Finally prove (1.4) by applying (1) of
Theorem 1.4.

Lemma 4.1. Let ω̂ = 1 + ω + · · ·+ ωk−1 with ω = e
2πi
k . Then

Petk(λ, µ) = sλ/µ(1− ω̂). (4.1)

Proof. The Jacobi-Trudi identity (2.11) and (2.7) yield

sλ/µ(1− ω̂) = det
1≤i,j≤`(λ)

(
σλi−µj−i+j(1− ω̂)

)
. (4.2)

We next simplify σr(1− ω̂) by using (2.4), (2.2) and (2.9) as follows.

∞∑
r=0

σr(1− ω̂) tr = σt(1− ω̂) = σt

(
−
k−1∑
i=1

ωi

)

= σt

(
k−1∑
i=1

ωi

)−1

= H(t)−1

∣∣∣∣∣xi=ωi, 1≤i<k
xi=0, i≥k

=
k−1∏
i=1

(1− ωit) =
1− tk

1− t
= 1 + t+ · · ·+ tk−1.
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which further results in σr(1 − ω̂) = 1 for 0 ≤ r < k and σr(1 − ω̂) = 0 otherwise. Here the
second to last equality comes from the last equality of (1.1). Plugging it to (4.2), together
with the determinantal formula of Petk(λ, µ) in Theorem 1.1, gives (4.1), which completes
the proof. �

This lemma combined with a multiparameter Murnaghan-Nakayama rule in [10] provides
another proof of (1.3); see Remark 4.2. Therefore, it is advantageous to write the Petrie
symmetric functions in the λ-ring notations.

Remark 4.2. The equality (1.1) is equivalent to

G(k,m)(x) = σm((1− ω̂)x), (4.3)

by the following argument on the formal power series

∞∑
m=0

σm((1− ω̂)x) tm = σt((1− ω̂)x) = σt

(
x−

k−1∑
i=0

ωix

)

= σt(x)σt

(
k−1∑
i=0

ωix

)−1

= H(t)
k−1∏
i=0

H(ωit)−1 =
∞∑
m=0

G(k,m)(x)tm.

(4.4)

These equalities are true because of (2.4), (2.2) and (2.9). Let us recall an identity from [10,
Corollary 3.2] (q = t = 0):

σm((a− b)x)sµ(x) =
∑

λ`m+|µ|

sλ/µ(a− b)sλ(x), (4.5)

where a and b are sequences of parameters. Take

a = (1, 0, . . .) and b = (1, ω, . . . , ωk−1, 0 . . .),

so that (a− b)x = (1− ω̂)x, then we conclude (1.3) by combining (4.3), (4.1) and (4.5).

Some properties of Petk(λ, µ) are to be discussed, which reduces the problem to finding
combinatorial meanings for Petk(λ, µ) when λ/µ is connected with row-size bounded by k.

Lemma 4.3. For partitions µ, λ such that µ ⊆ λ, we have
(1) if there exists i such that λi − µi ≥ k, then Petk(λ, µ) = 0;
(2) if λ/µ has connected components ρi/ξi for 1 ≤ i ≤ m, then Petk(λ, µ) =

∏m
i=1 Petk(ρi, ξi).

Proof. Define two matrices A = (aij) = (λi − µj − i+ j) and M = (mij) = (χ(0 ≤ aij < k)).
As one can see, the entries in A along each row (or column) are strictly increasing from left
to right (decreasing from top to bottom). If λi−µi ≥ k, then all entries of A to the northeast
of the (i, i)-entry are larger than or equal to k, i.e., mkl = 0 for all k ≤ i and l ≥ i. Applying
the Laplace expansion to the last column of M produces det(M) = 0 inductively, which gives
(1).

For (2), let j be the smallest integer for which µj ≥ λj+1, that is, λ/µ is connected till the
j-th row. In this case aj+1,j = λj+1−µj−1 < 0, which yields that akl < 0 for all k ≥ j+1 and
l ≤ j. Equivalently mkl = 0 for all k ≥ j+1 and l ≤ j. Applying the Laplace expansion to the
first column of M inductively leads to Petk(λ, µ) = Petk(ρ1, ξ1)Petk(λ/ρ1, µ/ξ1). Repeating
this process gives (2). �
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We are ready to prove (1.4).
Proof of Theorem 1.4 (2). By (2.10) and (2.12), we have

sλ/µ(1− ω̂) =
∑

µ⊆ν⊆λ
sλ/ν(−ω̂)sν/µ(1) =

∑
ν

(−1)|λ/ν|sλ
′
/ν
′
(ω̂) (4.6)

summed over all partitions µ ⊆ ν ⊆ λ such that ν/µ is a horizontal strip. This is true because

sν/µ(1) = sν/µ(1) = 1 if and only if ν/µ is a horizontal strip.

The plethysm pk ◦ hn [15, Page 135] is defined by pk ◦ hn = hn(xk1, x
k
2, · · · ). Consider the

generating function of pk ◦ hn, we find

∞∑
n=0

pk ◦ hnzkn =

∞∑
n=0

hn(xk1, x
k
2, · · · )zkn =

∏
i≥1

1

1− xki zk
=
∏
i≥1

k−1∏
j=0

1

1− ωjxiz
=

∞∑
n=0

σn(ω̂x)zkn.

This proves pk ◦ hn = σn(ω̂x). Together with (4.5) for m = kn,

a = (1, ω, . . . , ωk−1, 0, . . .) and b = (0, 0, . . .),

we arrive at

pk ◦ hn(x)sν(x) = σn(ω̂x)sν(x) =
∑

λ`kn+|µ|

sλ/ν(ω̂)sλ(x). (4.7)

On the other hand, it follows from [17, (2)] (see also [3, 5, 7]) that

pk ◦ hn(x)sν(x) =
∑

λ`kn+|ν|

sgnk(λ, ν)sλ(x) (4.8)

summed over partitions λ with a (unique) k-ribbon tiling Θ of λ/ν satisfying condition (ii
′
).

In this case, we call λ/ν horizontal k-tileable and

sgnk(λ, ν) :=
∏
i≥1

(−1)ht(Θi).

Combining (4.7) and (4.8) gives that

sλ/ν(ω̂) =

{
sgnk(λ, ν) if λ/ν is horizontal k-tileable;

0 otherwise.
(4.9)

If ξ is a ribbon, then r(ξ) + ht(ξ
′
) = |ξ|, by which (4.9) is equivalent to

sλ
′
/ν
′
(ω̂) =

{
(−1)|λ/ν|

∏
i≥1(−1)r(Θi) if λ/ν is vertical k-tileable;

0 otherwise.
(4.10)

Here λ/ν is vertical k-tileable if there exists a (unique) k-ribbon tiling Θ′ of λ/ν satisfying

condition (ii). Substituting (4.10) to (4.6) yields that sλ/µ(1− ω̂) = 0 unless λ/µ has at least
one proper k-ribbon tiling, i.e., |Dkn(λ, µ)| ≥ 1 for some n. In this case,

sλ/µ(1− ω̂) =
∑
n≥0

∑
(Θ,ν)∈Dkn

∏
i≥1

(−1)r(Θi) (4.11)

where Dkn = Dkn(λ, µ). There are an even number of 1’s or −1’s appearing in the second
summation of (4.11) as long as |Dkn(λ, µ)| 6= 1 by (1) of Theorem 1.4. This, together with

Lemma 4.1, suggests that Petk(λ, µ) = sλ/µ(1 − ω̂) = 0 unless |Dkn(λ, µ)| = 1, by which and
Lemma 4.3 (1) we conclude that (1.4) is true for connected λ/µ with row-size less than k.
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One can easily extend (1.4) to disconnected skew diagrams by Lemma 4.3 (2), which finishes
the proof. �

Specializing µ = ∅ in Theorem 1.4 and Combining Theorem 3.8, we obtain the result below
firstly in [4, Theorem 1.3].

Corollary 4.4. Petk(λ) = sλ(1 − ω̂) = 0 unless λ1 < k and corek(λ) has at most one row.

In this case, if γ(1), . . . , γ(`) is any sequence of partitions such that

corek(λ) = γ(0) ⊆ γ(1) ⊆ · · · ⊂ γ(`−1) ⊆ γ(`) = λ

and γ(j)/γ(j−1) is a k-ribbon for all 1 ≤ j ≤ `. Then Petk(λ) = 1 if corek(λ) = λ; otherwise

Petk(λ) =
∏̀
j=1

(−1)r(γ
(j)/γ(j−1)). (4.12)

Proof. It follows from Theorem 3.8, Theorem 1.4 and that the RHS of (4.12) is independent
of different ribbon decompositions of λ (see for instance [1, §6], [12, Proposition 3.3.1] and
[16, Lemma 4.1]). �

With the help of Theorem 1.4, it is easier to derive two specializations, respectively of skew
Schur functions and of the Pieri-like rule for the Petrie symmetric functions.

4.1. A specialization of Schur functions. Equation (4.9) presents a combinatorial inter-
pretation for sλ/µ(1, ω, · · · , ωk−1); see also [15, p. 91, Ex. 24(b)]. Now we shall exhibit an

analogous description for sλ/µ(ω, ω2 · · · , ωk−1) as a direct consequence of Theorem 1.4.

Corollary 4.5. Let µ, λ be two partitions such that µ ⊆ λ and ω = e
2πi
k . Then we have

sλ/µ(ω, ω2 · · · , ωk−1) = (−1)|ν/µ|
m∏
i=1

(−1)ht(Θi) (4.13)

if λ/µ has only one dual proper tiling (Θ1, · · · ,Θm, ν) and every column of λ/µ has size less
than k; otherwise sλ/µ(ω, ω2 · · · , ωk−1) = 0.

Proof. By the duality rule (2.10), we have

sλ/µ(ω, ω2 · · · , ωk−1) = sλ/µ(ω̂ − 1) = (−1)|λ/µ|sλ
′
/µ
′
(1− ω̂).

Then (4.13) holds by taking conjugation on (1.4). �

4.2. A specialization of (1.3). As we mentioned in the introduction, one of the motivations
to study Petrie symmetric functions is the Liu-Polo conjecture [9], which is now a corollary
of Theorem 1.1. Here we use f to denote f(x).

Corollary 4.6. [4, 9] For k ∈ N+\{1}, we have

G(k, k) =
∑
λ`k

λE(k−1,1)

mλ =

k−2∑
i=0

(−1)is(k−1−i,1i+1),

G(k, 2k − 1) =
∑

λ`2k−1
λE(k−1,k−1,1)

mλ =
k−2∑
i=0

(−1)is(k−1,k−1−i,1i+1),
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where E is the dominance order, that is, µE λ if |λ| = |µ| and µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi
for all i ≥ 1.

We consider an extension of Corollary 4.6, that is the case of (1.3) when µ is a row partition.

Corollary 4.7. Let k ∈ N+\{1} and r ∈ N. Then

G(k, k)hr =
r∑
i=1

s(r+k−i,i) +
k−r−2∑
i=0

(−1)is(k−i−1,r+1,1i) +
r∑
i=1

(−1)k−i+1s(r,i,1k−i), (4.14)

G(k, 2k − 1)hr =

min(k−1,r)∑
i=1

i∑
j=1

(−1)k−j+1s(r+k−1−i,i,j,1k−j) (4.15)

+

min(k−2,r)∑
i=0

k−2−i∑
j=0

(−1)js(r+k−1−i,k−1−j,i+1,1j).

Proof. By definition, hr = s(r). Theorem 1.4 tells us that the coefficient of sλ on the RHS of
(4.14) is non-zero if and only if λ is obtained from (r) by adding a horizontal strip or a ribbon
of size k and each row-size of λ/(r) is less than k.

If λ/(r) is a horizontal strip of size k, then λ/(r) must have exactly two rows, that is,
λ = (r + k − i, i) for 1 ≤ i ≤ r with coefficient 1 by (1.4). Note that i 6= 0 because every row
of λ/(r) has less than k boxes. This contributes the first term of (4.14).

If λ/(r) is a k-ribbon, then r ≤ k − 1. If λ/(r) is a hook, that is a ribbon and a partition,
we must have λ = (r, i, 1k−i) for 1 ≤ i ≤ r with coefficient (−1)k+1−i; otherwise λ/(r) has a
box from the first row, that is, λ = (k − i− 1, r + 1, 1i) for 0 ≤ i ≤ k − r − 2 with coefficient
(−1)i. These correspond to the second and the third terms of (4.14), as wished.

For the formula of G(k, 2k − 1)hr, since each part of λ/(r) is less than k, the partition λ
can only be obtained by adding firstly a horizontal strip of size k − 1 and then a k-ribbon,
namely ν = (r + k − 1 − i, i) for 0 ≤ i ≤ min(k − 1, r). In addition, the ending box of the
unique k-ribbon is not at the first row. If λ/ν is a hook and ν has two rows, then we have
λ = (r + k − 1 − i, i, j, 1k−j) for 1 ≤ i ≤ k − 1, and i ≤ r with coefficient (−1)k−j+1, which
yields the first term of (4.15); otherwise if λ/ν is a hook and ν = (r+ k− 1) is a row, or λ/ν
is not a hook, then λ = (r+ k − 1− i, k − 1− j, i+ 1, 1j) where 0 ≤ i ≤ k − 2 and i ≤ r with
coefficient (−1)j . This corresponds to the second term of (4.15) and we complete the proof.

�
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